Internal
problem
ID
[17382]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
34
Date
solved
:
Monday, March 31, 2025 at 04:10:40 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=diff(x(y),y) = (2*x(y)*y+x(y)^2)/(3*y^2+2*x(y)*y); dsolve(ode,x(y), singsol=all);
ode=D[x[y],y]==(2*x[y]*y+x[y]^2)/(3*y^2+2*x[y]*y); ic={}; DSolve[{ode,ic},x[y],y,IncludeSingularSolutions->True]
from sympy import * y = symbols("y") x = Function("x") ode = Eq(Derivative(x(y), y) - (2*y*x(y) + x(y)**2)/(3*y**2 + 2*y*x(y)),0) ics = {} dsolve(ode,func=x(y),ics=ics)
Timed Out