76.6.16 problem 18

Internal problem ID [17400]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.2 (Two first order linear differential equations). Problems at page 142
Problem number : 18
Date solved : Monday, March 31, 2025 at 04:12:54 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-2 x \left (t \right )+y \left (t \right )-11\\ \frac {d}{d t}y \left (t \right )&=-5 x \left (t \right )+4 y \left (t \right )-35 \end{align*}

Maple. Time used: 0.114 (sec). Leaf size: 36
ode:=[diff(x(t),t) = -2*x(t)+y(t)-11, diff(y(t),t) = -5*x(t)+4*y(t)-35]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{3 t} c_2 +{\mathrm e}^{-t} c_1 -3 \\ y \left (t \right ) &= 5 \,{\mathrm e}^{3 t} c_2 +{\mathrm e}^{-t} c_1 +5 \\ \end{align*}
Mathematica. Time used: 0.036 (sec). Leaf size: 81
ode={D[x[t],t]==-2*x[t]+y[t]-11,D[y[t],t]==-5*x[t]+4*y[t]-35}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{4} e^{-t} \left (-12 e^t+(c_2-c_1) e^{4 t}+5 c_1-c_2\right ) \\ y(t)\to \frac {1}{4} e^{-t} \left (20 e^t-5 (c_1-c_2) e^{4 t}+5 c_1-c_2\right ) \\ \end{align*}
Sympy. Time used: 0.157 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(2*x(t) - y(t) + Derivative(x(t), t) + 11,0),Eq(5*x(t) - 4*y(t) + Derivative(y(t), t) + 35,0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} e^{- t} + \frac {C_{2} e^{3 t}}{5} - 3, \ y{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{3 t} + 5\right ] \]