Internal
problem
ID
[17447]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.5
(Repeated
Eigenvalues).
Problems
at
page
188
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 04:13:59 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -5/2*x(t)+3/2*y(t), diff(y(t),t) = -3/2*x(t)+1/2*y(t)]; ic:=x(0) = 3y(0) = -1; dsolve([ode,ic]);
ode={D[x[t],t]==-5/2*x[t]+3/2*y[t],D[y[t],t]==-3/2*x[t]+1/2*y[t]}; ic={x[0]==3,y[0]==-1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(5*x(t)/2 - 3*y(t)/2 + Derivative(x(t), t),0),Eq(3*x(t)/2 - y(t)/2 + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)