Internal
problem
ID
[17596]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.5
(Nonhomogeneous
Equations,
Method
of
Undetermined
Coefficients).
Problems
at
page
260
Problem
number
:
27
Date
solved
:
Monday, March 31, 2025 at 04:19:56 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+4*y(t) = 2*t^2+4*t*exp(2*t)+sin(2*t)*t; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-4*D[y[t],t]+4*y[t]==2*t^2+4*t*Exp[2*t]+t*Sin[2*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*t**2 - 4*t*exp(2*t) - t*sin(2*t) + 4*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)