77.1.42 problem 59 (page 103)

Internal problem ID [17861]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 59 (page 103)
Date solved : Monday, March 31, 2025 at 04:37:25 PM
CAS classification : [_rational]

\begin{align*} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.084 (sec). Leaf size: 28
ode:=2*x*y(x)^2-y(x)+(y(x)^2+x+y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\operatorname {RootOf}\left (x^{2} {\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{2 \textit {\_Z}}+c_1 \,{\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}-x \right )} \]
Mathematica. Time used: 0.165 (sec). Leaf size: 22
ode=(2*x*y[x]^2-y[x])+(y[x]^2+x+y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x^2-\frac {x}{y(x)}+y(x)+\log (y(x))=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + (x + y(x)**2 + y(x))*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out