77.1.134 problem 161 (page 236)

Internal problem ID [17953]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 161 (page 236)
Date solved : Monday, March 31, 2025 at 04:52:18 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \sin \left (2 x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)+y(x) = sin(x)*sin(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\sin \left (x \right )^{2} \cos \left (x \right )}{4}+\frac {\left (4 c_2 +x \right ) \sin \left (x \right )}{4}+\cos \left (x \right ) c_1 \]
Mathematica. Time used: 0.04 (sec). Leaf size: 33
ode=D[y[x],{x,2}]+y[x]==Sin[x]*Sin[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{16} (\cos (3 x)+(-1+16 c_1) \cos (x)+4 (x+4 c_2) \sin (x)) \]
Sympy. Time used: 0.344 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sin(x)*sin(2*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} - \frac {\sin ^{2}{\left (x \right )}}{4}\right ) \cos {\left (x \right )} + \left (C_{2} + \frac {x}{4}\right ) \sin {\left (x \right )} \]