77.1.137 problem 164 (page 240)

Internal problem ID [17956]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 164 (page 240)
Date solved : Monday, March 31, 2025 at 04:52:25 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y&=x \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 18
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,x^{2}+c_1 \,x^{3}+\frac {1}{2} x \]
Mathematica. Time used: 0.01 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^2 (c_2 x+c_1) \]
Sympy. Time used: 0.313 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) - x + 6*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} x + C_{2} x^{2} + \frac {1}{2}\right ) \]