78.6.12 problem 3 (b)

Internal problem ID [18109]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 10 (Linear equations). Problems at page 82
Problem number : 3 (b)
Date solved : Monday, March 31, 2025 at 05:10:39 PM
CAS classification : [_Bernoulli]

\begin{align*} x y^{2} y^{\prime }+y^{3}&=x \cos \left (x \right ) \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 110
ode:=x*y(x)^2*diff(y(x),x)+y(x)^3 = cos(x)*x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {{\left (9 \left (x^{2}-2\right ) \cos \left (x \right )+3 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{3}}}{x} \\ y &= -\frac {{\left (9 \left (x^{2}-2\right ) \cos \left (x \right )+3 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2 x} \\ y &= \frac {{\left (9 \left (x^{2}-2\right ) \cos \left (x \right )+3 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{2 x} \\ \end{align*}
Mathematica. Time used: 0.453 (sec). Leaf size: 114
ode=x*y[x]^2*D[y[x],x]+y[x]^3==x*Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{3 x \left (x^2-6\right ) \sin (x)+9 \left (x^2-2\right ) \cos (x)+c_1}}{x} \\ y(x)\to -\frac {\sqrt [3]{-1} \sqrt [3]{3 x \left (x^2-6\right ) \sin (x)+9 \left (x^2-2\right ) \cos (x)+c_1}}{x} \\ y(x)\to \frac {(-1)^{2/3} \sqrt [3]{3 x \left (x^2-6\right ) \sin (x)+9 \left (x^2-2\right ) \cos (x)+c_1}}{x} \\ \end{align*}
Sympy. Time used: 4.698 (sec). Leaf size: 139
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**2*Derivative(y(x), x) - x*cos(x) + y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {C_{1}}{x^{3}} + 3 \sin {\left (x \right )} + \frac {9 \cos {\left (x \right )}}{x} - \frac {18 \sin {\left (x \right )}}{x^{2}} - \frac {18 \cos {\left (x \right )}}{x^{3}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {C_{1}}{x^{3}} + 3 \sin {\left (x \right )} + \frac {9 \cos {\left (x \right )}}{x} - \frac {18 \sin {\left (x \right )}}{x^{2}} - \frac {18 \cos {\left (x \right )}}{x^{3}}}}{2}, \ y{\left (x \right )} = \sqrt [3]{\frac {C_{1}}{x^{3}} + 3 \sin {\left (x \right )} + \frac {9 \cos {\left (x \right )}}{x} - \frac {18 \sin {\left (x \right )}}{x^{2}} - \frac {18 \cos {\left (x \right )}}{x^{3}}}\right ] \]