78.16.23 problem 23

Internal problem ID [18331]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 23. Operator Methods for Finding Particular Solutions. Problems at page 169
Problem number : 23
Date solved : Monday, March 31, 2025 at 05:25:45 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }&=x +1 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 55
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+diff(y(x),x) = 1+x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{\frac {x}{2}} \left (-c_2 \sqrt {3}+c_1 \right ) \cos \left (\frac {\sqrt {3}\, x}{2}\right )}{2}+\frac {{\mathrm e}^{\frac {x}{2}} \left (c_1 \sqrt {3}+c_2 \right ) \sin \left (\frac {\sqrt {3}\, x}{2}\right )}{2}+\frac {x^{2}}{2}+2 x +c_3 \]
Mathematica. Time used: 0.382 (sec). Leaf size: 79
ode=D[y[x],{x,3}]-D[y[x],{x,2}]+D[y[x],x]==x+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} \left (x (x+4)+\left (c_1-\sqrt {3} c_2\right ) e^{x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )+\left (\sqrt {3} c_1+c_2\right ) e^{x/2} \sin \left (\frac {\sqrt {3} x}{2}\right )\right )+c_3 \]
Sympy. Time used: 0.189 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {x^{2}}{2} + 2 x + \left (C_{2} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{3} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{\frac {x}{2}} \]