81.5.14 problem 14

Internal problem ID [18606]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 58
Problem number : 14
Date solved : Monday, March 31, 2025 at 05:46:20 PM
CAS classification : [[_high_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime \prime }-y&=x^{4} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 29
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-y(x) = x^4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x^{4}-24+c_1 \cos \left (x \right )+c_2 \,{\mathrm e}^{x}+c_3 \sin \left (x \right )+c_4 \,{\mathrm e}^{-x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 36
ode=D[y[x],{x,4}]-y[x]==x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x^4+c_1 e^x+c_3 e^{-x}+c_2 \cos (x)+c_4 \sin (x)-24 \]
Sympy. Time used: 0.112 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 - y(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} + C_{3} \sin {\left (x \right )} + C_{4} \cos {\left (x \right )} - x^{4} - 24 \]