82.8.1 problem Ex. 1

Internal problem ID [18678]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 25
Problem number : Ex. 1
Date solved : Monday, March 31, 2025 at 05:56:17 PM
CAS classification : [[_homogeneous, `class D`], _rational, _Bernoulli]

\begin{align*} x^{2}+y^{2}+2 x +2 y y^{\prime }&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 37
ode:=x^2+y(x)^2+2*x+2*y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {{\mathrm e}^{-x} c_1 -x^{2}} \\ y &= -\sqrt {{\mathrm e}^{-x} c_1 -x^{2}} \\ \end{align*}
Mathematica. Time used: 5.839 (sec). Leaf size: 47
ode=(x^2+y[x]^2+2*x)+2*y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-x^2+c_1 e^{-x}} \\ y(x)\to \sqrt {-x^2+c_1 e^{-x}} \\ \end{align*}
Sympy. Time used: 0.461 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + 2*x + y(x)**2 + 2*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} e^{- x} - x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} e^{- x} - x^{2}}\right ] \]