Internal
problem
ID
[962]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
5.3,
Higher-Order
Linear
Differential
Equations.
Homogeneous
Equations
with
Constant
Coefficients.
Page
300
Problem
number
:
problem
58
Date
solved
:
Saturday, March 29, 2025 at 10:35:27 PM
CAS
classification
:
[[_3rd_order, _exact, _linear, _homogeneous]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+6*x^2*diff(diff(y(x),x),x)+7*x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+6*x^2*D[y[x],{x,2}]+7*x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 6*x**2*Derivative(y(x), (x, 2)) + 7*x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)