83.8.24 problem 25

Internal problem ID [19079]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Misc examples on chapter II at page 25
Problem number : 25
Date solved : Monday, March 31, 2025 at 06:45:07 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} y^{\prime }&=\sin \left (x +y\right )+\cos \left (x +y\right ) \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 20
ode:=diff(y(x),x) = sin(x+y(x))+cos(x+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x -2 \arctan \left (-\frac {{\mathrm e}^{x}}{c_1}+1\right ) \]
Mathematica. Time used: 60.256 (sec). Leaf size: 387
ode=D[y[x],x]==Sin[x+y[x]]+Cos[x+y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -2 \arccos \left (\frac {\sin \left (\frac {x}{2}\right )-\cos \left (\frac {x}{2}\right )-\sinh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)-\cosh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)-\sin \left (\frac {x}{2}\right ) \cosh (x) (\cosh (c_1)+\sinh (c_1))}{\sqrt {(3 \cosh (x+c_1)-\sinh (x+c_1)-2) (\cosh (x+c_1)+\sinh (x+c_1))}}\right ) \\ y(x)\to 2 \arccos \left (\frac {\sin \left (\frac {x}{2}\right )-\cos \left (\frac {x}{2}\right )-\sinh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)-\cosh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)-\sin \left (\frac {x}{2}\right ) \cosh (x) (\cosh (c_1)+\sinh (c_1))}{\sqrt {(3 \cosh (x+c_1)-\sinh (x+c_1)-2) (\cosh (x+c_1)+\sinh (x+c_1))}}\right ) \\ y(x)\to -2 \arccos \left (\frac {-\sin \left (\frac {x}{2}\right )+\cos \left (\frac {x}{2}\right )+\sinh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)+\cosh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)+\sin \left (\frac {x}{2}\right ) \cosh (x) (\cosh (c_1)+\sinh (c_1))}{\sqrt {(3 \cosh (x+c_1)-\sinh (x+c_1)-2) (\cosh (x+c_1)+\sinh (x+c_1))}}\right ) \\ y(x)\to 2 \arccos \left (\frac {-\sin \left (\frac {x}{2}\right )+\cos \left (\frac {x}{2}\right )+\sinh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)+\cosh (c_1) \sin \left (\frac {x}{2}\right ) \sinh (x)+\sin \left (\frac {x}{2}\right ) \cosh (x) (\cosh (c_1)+\sinh (c_1))}{\sqrt {(3 \cosh (x+c_1)-\sinh (x+c_1)-2) (\cosh (x+c_1)+\sinh (x+c_1))}}\right ) \\ \end{align*}
Sympy. Time used: 10.592 (sec). Leaf size: 102
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(x + y(x)) - cos(x + y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x + 2 \operatorname {acot}{\left (\frac {\sqrt {2 \sqrt {2} + 3} \left (e^{\sqrt {2 \sqrt {2} + 3} \left (C_{1} + x\right )} + e^{\sqrt {2} \sqrt {2 \sqrt {2} + 3} \left (C_{1} + x\right )}\right )}{e^{\sqrt {2 \sqrt {2} + 3} \left (C_{1} + x\right )} - e^{\sqrt {2} \sqrt {2 \sqrt {2} + 3} \left (C_{1} + x\right )}} \right )} - \frac {3 \pi }{4} \]