83.46.11 problem Ex 11 page 75
Internal
problem
ID
[19505]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
V.
Singular
solutions
Problem
number
:
Ex
11
page
75
Date
solved
:
Monday, March 31, 2025 at 07:26:36 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
\begin{align*} {y^{\prime }}^{2} y^{2} \cos \left (a \right )^{2}-2 y^{\prime } x y \sin \left (a \right )^{2}+y^{2}-x^{2} \sin \left (a \right )^{2}&=0 \end{align*}
✓ Maple. Time used: 0.112 (sec). Leaf size: 167
ode:=diff(y(x),x)^2*y(x)^2*cos(a)^2-2*diff(y(x),x)*x*y(x)*sin(a)^2+y(x)^2-x^2*sin(a)^2 = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \operatorname {RootOf}\left (-\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {\textit {\_a} \left (\cos \left (a \right )^{2} \textit {\_a}^{2}-\sin \left (a \right )^{2}-\sqrt {-\cos \left (a \right )^{2} \textit {\_a}^{2}+\sin \left (a \right )^{2}}\right )}{\cos \left (a \right )^{2} \textit {\_a}^{4}+2 \cos \left (a \right )^{2} \textit {\_a}^{2}-\sin \left (a \right )^{2}-\textit {\_a}^{2}}d \textit {\_a} +c_1 \right ) x \\
y &= \operatorname {RootOf}\left (-\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {\textit {\_a} \left (\cos \left (a \right )^{2} \textit {\_a}^{2}-\sin \left (a \right )^{2}+\sqrt {-\cos \left (a \right )^{2} \textit {\_a}^{2}+\sin \left (a \right )^{2}}\right )}{\cos \left (a \right )^{2} \textit {\_a}^{4}+2 \cos \left (a \right )^{2} \textit {\_a}^{2}-\sin \left (a \right )^{2}-\textit {\_a}^{2}}d \textit {\_a} +c_1 \right ) x \\
\end{align*}
✓ Mathematica. Time used: 38.867 (sec). Leaf size: 281
ode=D[y[x],x]^2*y[x]^2*Cos[a]^2-2*D[y[x],x]*x*y[x]*Sin[a]^2+y[x]^2-x^2*Sin[a]^2==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {\sqrt {x^2 (-\cos (2 a))+2 \sqrt {2} x e^{2 c_1 \cos ^2(a)}-e^{4 c_1 \cos ^2(a)}-x^2}}{\sqrt {\cos (2 a)+1}} \\
y(x)\to \frac {\sqrt {x^2 (-\cos (2 a))+2 \sqrt {2} x e^{2 c_1 \cos ^2(a)}-e^{4 c_1 \cos ^2(a)}-x^2}}{\sqrt {\cos (2 a)+1}} \\
y(x)\to -\frac {(-1)^{3/4} \sqrt {-i x^2 \cos (2 a)+2 \sqrt {2} x e^{2 c_1 \cos ^2(a)}+i e^{4 c_1 \cos ^2(a)}-i x^2}}{\sqrt {\cos (2 a)+1}} \\
y(x)\to \frac {(-1)^{3/4} \sqrt {-i x^2 \cos (2 a)+2 \sqrt {2} x e^{2 c_1 \cos ^2(a)}+i e^{4 c_1 \cos ^2(a)}-i x^2}}{\sqrt {\cos (2 a)+1}} \\
\end{align*}
✓ Sympy. Time used: 170.132 (sec). Leaf size: 495
from sympy import *
x = symbols("x")
a = symbols("a")
y = Function("y")
ode = Eq(-x**2*sin(a)**2 - 2*x*y(x)*sin(a)**2*Derivative(y(x), x) + y(x)**2*cos(a)**2*Derivative(y(x), x)**2 + y(x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\text {Solution too large to show}
\]