Internal
problem
ID
[19517]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients
Problem
number
:
Ex
11
page
90
Date
solved
:
Monday, March 31, 2025 at 07:28:56 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=16*(1+x)^4*diff(diff(diff(diff(y(x),x),x),x),x)+96*(1+x)^3*diff(diff(diff(y(x),x),x),x)+104*(1+x)^2*diff(diff(y(x),x),x)+8*(1+x)*diff(y(x),x)+y(x) = x^2+4*x+3; dsolve(ode,y(x), singsol=all);
ode=16*(x+1)^4*D[y[x],{x,4}]+96*(x+1)^3*D[y[x],{x,3}]+104*(x+1)^2*D[y[x],{x,2}]+8*(x+1)*D[y[x],x]+y[x]==x^2+4*x+3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 - 4*x + 16*(x + 1)**4*Derivative(y(x), (x, 4)) + 96*(x + 1)**3*Derivative(y(x), (x, 3)) + 104*(x + 1)**2*Derivative(y(x), (x, 2)) + (8*x + 8)*Derivative(y(x), x) + y(x) - 3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-16*x**4*Derivative(y(x), (x, 4)) - 96*x**3*Derivative(y(x), (x, 3)) - 64*x**3*Derivative(y(x), (x, 4)) - 104*x**2*Derivative(y(x), (x, 2)) - 288*x**2*Derivative(y(x), (x, 3)) - 96*x**2*Derivative(y(x), (x, 4)) + x**2 - 208*x*Derivative(y(x), (x, 2)) - 288*x*Derivative(y(x), (x, 3)) - 64*x*Derivative(y(x), (x, 4)) + 4*x - y(x) - 104*Derivative(y(x), (x, 2)) - 96*Derivative(y(x), (x, 3)) - 16*Derivative(y(x), (x, 4)) + 3)/(8*(x + 1)) cannot be solved by the factorable group method