10.9.5 problem 5

Internal problem ID [1307]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number : 5
Date solved : Saturday, March 29, 2025 at 10:51:50 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+10*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_1 \sin \left (3 x \right )+c_2 \cos \left (3 x \right )\right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 24
ode=D[y[x],{x,2}]-2*D[y[x],x]+10*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (c_2 \cos (3 x)+c_1 \sin (3 x)) \]
Sympy. Time used: 0.150 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(10*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )}\right ) e^{x} \]