Internal
problem
ID
[1697]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Exact
equations.
Section
2.5
Page
79
Problem
number
:
18
Date
solved
:
Saturday, March 29, 2025 at 11:34:37 PM
CAS
classification
:
[_exact, _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=4*x^3*y(x)^2-6*x^2*y(x)-2*x-3+(2*x^4*y(x)-2*x^3)*diff(y(x),x) = 0; ic:=y(1) = 3; dsolve([ode,ic],y(x), singsol=all);
ode=(4*x^3*y[x]^2-6*x^2*y[x]-2*x-3)+(2*x^4*y[x]-2*x^3)*D[y[x],x]==0; ic=y[1]==3; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**3*y(x)**2 - 6*x**2*y(x) - 2*x + (2*x**4*y(x) - 2*x**3)*Derivative(y(x), x) - 3,0) ics = {y(1): 3} dsolve(ode,func=y(x),ics=ics)
Timed Out