Internal
problem
ID
[2140]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.2.
constant
coefficient.
Page
483
Problem
number
:
section
9.2,
problem
26
Date
solved
:
Saturday, March 29, 2025 at 11:49:21 PM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)-8*diff(y(x),x)-8*y(x) = 0; ic:=y(0) = 5, D(y)(0) = -2, (D@@2)(y)(0) = 6, (D@@3)(y)(0) = 8; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,4}]+2*D[y[x],{x,3}]-2*D[y[x],{x,2}]-8*D[y[x],x]-8*y[x]==0; ic={y[0]==5,Derivative[1][y][0] ==-2,Derivative[2][y][0] ==6,Derivative[3][y][0]==8}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*y(x) - 8*Derivative(y(x), x) - 2*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {y(0): 5, Subs(Derivative(y(x), x), x, 0): -2, Subs(Derivative(y(x), (x, 2)), x, 0): 6, Subs(Derivative(y(x), (x, 3)), x, 0): 8} dsolve(ode,func=y(x),ics=ics)