13.5.1 problem 4

Internal problem ID [2347]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 1.10. Page 80
Problem number : 4
Date solved : Saturday, March 29, 2025 at 11:58:04 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\cos \left (t^{2}\right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple
ode:=diff(y(t),t) = y(t)^2+cos(t^2); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[t],t]== y[t]^2+Cos[t^2]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2 - cos(t**2) + Derivative(y(t), t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
NotImplementedError : The given ODE -y(t)**2 - cos(t**2) + Derivative(y(t), t) cannot be solved by the lie group method