Internal
problem
ID
[2732]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.8,
Systems
of
differential
equations.
The
eigenva1ue-eigenvector
method.
Page
339
Problem
number
:
5
Date
solved
:
Sunday, March 30, 2025 at 12:15:56 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -7*x__1(t)+6*x__3(t), diff(x__2(t),t) = 5*x__2(t), diff(x__3(t),t) = 6*x__1(t)+2*x__3(t)]; dsolve(ode);
ode={D[ x1[t],t]==-7*x1[t]+0*x2[t]+6*x3[t],D[ x2[t],t]==0*x1[t]+5*x2[t]+0*x3[t],D[ x3[t],t]==6*x1[t]+0*x2[t]+2*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(7*x__1(t) - 6*x__3(t) + Derivative(x__1(t), t),0),Eq(-5*x__2(t) + Derivative(x__2(t), t),0),Eq(-6*x__1(t) - 2*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)