Internal
problem
ID
[2798]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.1
(Introduction).
Page
377
Problem
number
:
11
Date
solved
:
Sunday, March 30, 2025 at 12:20:41 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)+y(t)+z(t)-2*exp(-t), diff(y(t),t) = 2*x(t)+y(t)-z(t)-2*exp(-t), diff(z(t),t) = -3*x(t)+2*y(t)+4*z(t)+3*exp(-t)]; ic:=x(0) = 1y(0) = 0z(0) = 0; dsolve([ode,ic]);
ode={D[x[t],t]==x[t]+y[t]+z[t]-2*Exp[-t],D[y[t],t]==2*x[t]+y[t]-z[t]-2*Exp[-t],D[z[t],t]==-3*x[t]+2*y[t]+4*z[t]+3*Exp[-t]}; ic={x[0]==1,y[0]==0,z[0]==0}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) - y(t) - z(t) + Derivative(x(t), t) + 2*exp(-t),0),Eq(-2*x(t) - y(t) + z(t) + Derivative(y(t), t) + 2*exp(-t),0),Eq(3*x(t) - 2*y(t) - 4*z(t) + Derivative(z(t), t) - 3*exp(-t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)