14.31.5 problem 12

Internal problem ID [2824]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.6 (Qualitative properties of orbits). Page 417
Problem number : 12
Date solved : Sunday, March 30, 2025 at 12:33:13 AM
CAS classification : [[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} z^{\prime \prime }+z-2 z^{3}&=0 \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 32
ode:=diff(diff(z(t),t),t)+z(t)-2*z(t)^3 = 0; 
dsolve(ode,z(t), singsol=all);
 
\[ z = \operatorname {JacobiSN}\left (t c_1 +c_2 , \sqrt {-\frac {c_1^{2}-1}{c_1^{2}}}\right ) \sqrt {-c_1^{2}+1} \]
Mathematica. Time used: 60.177 (sec). Leaf size: 181
ode=D[z[t],{t,2}]+z[t]-2*z[t]^3==0; 
ic={}; 
DSolve[{ode,ic},z[t],t,IncludeSingularSolutions->True]
 
\begin{align*} z(t)\to -\frac {i \text {sn}\left (\frac {\sqrt {\left (\sqrt {1-4 c_1}+1\right ) (t+c_2){}^2}}{\sqrt {2}}|\frac {1-\sqrt {1-4 c_1}}{\sqrt {1-4 c_1}+1}\right )}{\sqrt {2} \sqrt {\frac {1}{-1+\sqrt {1-4 c_1}}}} \\ z(t)\to \frac {i \text {sn}\left (\frac {\sqrt {\left (\sqrt {1-4 c_1}+1\right ) (t+c_2){}^2}}{\sqrt {2}}|\frac {1-\sqrt {1-4 c_1}}{\sqrt {1-4 c_1}+1}\right )}{\sqrt {2} \sqrt {\frac {1}{-1+\sqrt {1-4 c_1}}}} \\ \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
z = Function("z") 
ode = Eq(-2*z(t)**3 + z(t) + Derivative(z(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=z(t),ics=ics)
 
Timed Out