14.32.5 problem 5

Internal problem ID [2829]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.7 (Phase portraits of linear systems). Page 427
Problem number : 5
Date solved : Sunday, March 30, 2025 at 12:33:24 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )-4 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-8 x_{1} \left (t \right )+4 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.119 (sec). Leaf size: 85
ode:=[diff(x__1(t),t) = x__1(t)-4*x__2(t), diff(x__2(t),t) = -8*x__1(t)+4*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{\frac {\left (5+\sqrt {137}\right ) t}{2}}+c_2 \,{\mathrm e}^{-\frac {\left (-5+\sqrt {137}\right ) t}{2}} \\ x_{2} \left (t \right ) &= -\frac {c_1 \,{\mathrm e}^{\frac {\left (5+\sqrt {137}\right ) t}{2}} \sqrt {137}}{8}+\frac {c_2 \,{\mathrm e}^{-\frac {\left (-5+\sqrt {137}\right ) t}{2}} \sqrt {137}}{8}-\frac {3 c_1 \,{\mathrm e}^{\frac {\left (5+\sqrt {137}\right ) t}{2}}}{8}-\frac {3 c_2 \,{\mathrm e}^{-\frac {\left (-5+\sqrt {137}\right ) t}{2}}}{8} \\ \end{align*}
Mathematica. Time used: 0.009 (sec). Leaf size: 148
ode={D[x1[t],t]==1*x1[t]-4*x2[t],D[x2[t],t]==-8*x1[t]+4*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{274} e^{-\frac {1}{2} \left (\sqrt {137}-5\right ) t} \left (c_1 \left (\left (137-3 \sqrt {137}\right ) e^{\sqrt {137} t}+137+3 \sqrt {137}\right )-8 \sqrt {137} c_2 \left (e^{\sqrt {137} t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{274} e^{-\frac {1}{2} \left (\sqrt {137}-5\right ) t} \left (c_2 \left (\left (137+3 \sqrt {137}\right ) e^{\sqrt {137} t}+137-3 \sqrt {137}\right )-16 \sqrt {137} c_1 \left (e^{\sqrt {137} t}-1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.205 (sec). Leaf size: 75
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-x__1(t) + 4*x__2(t) + Derivative(x__1(t), t),0),Eq(8*x__1(t) - 4*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = \frac {C_{1} \left (3 - \sqrt {137}\right ) e^{\frac {t \left (5 + \sqrt {137}\right )}{2}}}{16} + \frac {C_{2} \left (3 + \sqrt {137}\right ) e^{\frac {t \left (5 - \sqrt {137}\right )}{2}}}{16}, \ x^{2}{\left (t \right )} = C_{1} e^{\frac {t \left (5 + \sqrt {137}\right )}{2}} + C_{2} e^{\frac {t \left (5 - \sqrt {137}\right )}{2}}\right ] \]