15.7.14 problem 14

Internal problem ID [2995]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 11, page 45
Problem number : 14
Date solved : Sunday, March 30, 2025 at 01:04:10 AM
CAS classification : [_rational, _Bernoulli]

\begin{align*} 3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x}{y^{2}} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 135
ode:=3*diff(y(x),x)+2*y(x)/(1+x) = x/y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {18^{{1}/{3}} {\left (\left (3 x^{4}+8 x^{3}+6 x^{2}+12 c_1 \right ) \left (x +1\right )^{4}\right )}^{{1}/{3}}}{6 \left (x +1\right )^{2}} \\ y &= -\frac {18^{{1}/{3}} {\left (\left (3 x^{4}+8 x^{3}+6 x^{2}+12 c_1 \right ) \left (x +1\right )^{4}\right )}^{{1}/{3}} \left (1+i \sqrt {3}\right )}{12 \left (x +1\right )^{2}} \\ y &= \frac {18^{{1}/{3}} {\left (\left (3 x^{4}+8 x^{3}+6 x^{2}+12 c_1 \right ) \left (x +1\right )^{4}\right )}^{{1}/{3}} \left (i \sqrt {3}-1\right )}{12 \left (x +1\right )^{2}} \\ \end{align*}
Mathematica. Time used: 4.283 (sec). Leaf size: 144
ode=3*D[y[x],x]+2*y[x]/(x+1)==x/y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{\frac {3 x^4+8 x^3+6 x^2+12 c_1}{(x+1)^2}}}{2^{2/3} \sqrt [3]{3}} \\ y(x)\to -\frac {\sqrt [3]{-\frac {1}{3}} \sqrt [3]{\frac {3 x^4+8 x^3+6 x^2+12 c_1}{(x+1)^2}}}{2^{2/3}} \\ y(x)\to \frac {(-1)^{2/3} \sqrt [3]{\frac {3 x^4+8 x^3+6 x^2+12 c_1}{(x+1)^2}}}{2^{2/3} \sqrt [3]{3}} \\ \end{align*}
Sympy. Time used: 3.084 (sec). Leaf size: 138
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x/y(x)**2 + 3*Derivative(y(x), x) + 2*y(x)/(x + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\sqrt [3]{\frac {C_{1} + 9 x^{4} + 24 x^{3} + 18 x^{2}}{x^{2} + 2 x + 1}} \left (- \sqrt [3]{6} - \sqrt [3]{2} \cdot 3^{\frac {5}{6}} i\right )}{12}, \ y{\left (x \right )} = \frac {\sqrt [3]{\frac {C_{1} + 9 x^{4} + 24 x^{3} + 18 x^{2}}{x^{2} + 2 x + 1}} \left (- \sqrt [3]{6} + \sqrt [3]{2} \cdot 3^{\frac {5}{6}} i\right )}{12}, \ y{\left (x \right )} = \frac {\sqrt [3]{6} \sqrt [3]{\frac {C_{1} + 9 x^{4} + 24 x^{3} + 18 x^{2}}{x^{2} + 2 x + 1}}}{6}\right ] \]