15.12.21 problem 21

Internal problem ID [3165]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 20, page 90
Problem number : 21
Date solved : Sunday, March 30, 2025 at 01:20:08 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=\csc \left (2 x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 77
ode:=diff(diff(y(x),x),x)+9*y(x) = csc(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sin \left (x \right ) \left (4 \cos \left (x \right )^{2}-1\right ) \ln \left (\csc \left (x \right )-\cot \left (x \right )\right )}{6}+\frac {\left (4 \cos \left (x \right )^{3}-3 \cos \left (x \right )\right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right )}{6}+4 c_1 \cos \left (x \right )^{3}+4 \sin \left (x \right ) \cos \left (x \right )^{2} c_2 +\frac {\left (-9 c_1 +4 \sin \left (x \right )\right ) \cos \left (x \right )}{3}-\sin \left (x \right ) c_2 \]
Mathematica. Time used: 0.038 (sec). Leaf size: 65
ode=D[y[x],{x,2}]+9*y[x]==Csc[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{6} \left (\cos (3 x) \text {arctanh}(\sin (x))+4 \sin (2 x)+\sin (3 x) \log \left (\sin \left (\frac {x}{2}\right )\right )+6 c_1 \cos (3 x)+6 c_2 \sin (3 x)-\sin (3 x) \log \left (\cos \left (\frac {x}{2}\right )\right )\right ) \]
Sympy. Time used: 1.151 (sec). Leaf size: 63
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) + Derivative(y(x), (x, 2)) - 1/sin(2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} - \frac {\log {\left (\sin {\left (x \right )} - 1 \right )}}{12} + \frac {\log {\left (\sin {\left (x \right )} + 1 \right )}}{12} - \frac {2 \sin {\left (x \right )}}{3}\right ) \cos {\left (3 x \right )} + \left (C_{2} + \frac {\log {\left (\cos {\left (x \right )} - 1 \right )}}{12} - \frac {\log {\left (\cos {\left (x \right )} + 1 \right )}}{12} + \frac {2 \cos {\left (x \right )}}{3}\right ) \sin {\left (3 x \right )} \]