15.23.4 problem 4

Internal problem ID [3354]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 41, page 195
Problem number : 4
Date solved : Sunday, March 30, 2025 at 01:37:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 45
Order:=6; 
ode:=2*x^2*diff(diff(y(x),x),x)+(-x^2+x)*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \left (1+\frac {1}{2} x +\frac {1}{8} x^{2}+\frac {1}{48} x^{3}+\frac {1}{384} x^{4}+\frac {1}{3840} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}}+c_2 x \left (1+\frac {1}{5} x +\frac {1}{35} x^{2}+\frac {1}{315} x^{3}+\frac {1}{3465} x^{4}+\frac {1}{45045} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 86
ode=2*x^2*D[y[x],{x,2}]+(x-x^2)*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 x \left (\frac {x^5}{45045}+\frac {x^4}{3465}+\frac {x^3}{315}+\frac {x^2}{35}+\frac {x}{5}+1\right )+\frac {c_2 \left (\frac {x^5}{3840}+\frac {x^4}{384}+\frac {x^3}{48}+\frac {x^2}{8}+\frac {x}{2}+1\right )}{\sqrt {x}} \]
Sympy. Time used: 0.997 (sec). Leaf size: 61
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + (-x**2 + x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x \left (\frac {x^{4}}{3465} + \frac {x^{3}}{315} + \frac {x^{2}}{35} + \frac {x}{5} + 1\right ) + \frac {C_{1} \left (\frac {x^{5}}{3840} + \frac {x^{4}}{384} + \frac {x^{3}}{48} + \frac {x^{2}}{8} + \frac {x}{2} + 1\right )}{\sqrt {x}} + O\left (x^{6}\right ) \]