Internal
problem
ID
[3659]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
40
Date
solved
:
Sunday, March 30, 2025 at 02:02:27 AM
CAS
classification
:
[_Bernoulli]
ode:=diff(y(x),x)-3/2*y(x)/x = 6*y(x)^(1/3)*x^2*ln(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-3/(2*x)*y[x]==6*y[x]^(1/3)*x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*x**2*y(x)**(1/3)*log(x) + Derivative(y(x), x) - 3*y(x)/(2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)