Internal
problem
ID
[3670]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
51
Date
solved
:
Sunday, March 30, 2025 at 02:03:51 AM
CAS
classification
:
[_rational, _Bernoulli]
With initial conditions
ode:=diff(y(x),x)+2*x/(x^2+1)*y(x) = x*y(x)^2; ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]+2*x/(1+x^2)*y[x]==x*y[x]^2; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x)**2 + 2*x*y(x)/(x**2 + 1) + Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)