Internal
problem
ID
[3689]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.9,
Exact
Differential
Equations.
page
91
Problem
number
:
Problem
6
Date
solved
:
Sunday, March 30, 2025 at 02:05:48 AM
CAS
classification
:
[[_homogeneous, `class G`], _exact, _rational, _Bernoulli]
ode:=y(x)^2-2*x+2*x*y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]^2-2*x)+2*x*y[x]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)*Derivative(y(x), x) - 2*x + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)