Internal
problem
ID
[3726]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.3,
The
Method
of
Undetermined
Coefficients.
page
525
Problem
number
:
Problem
35
Date
solved
:
Sunday, March 30, 2025 at 02:06:37 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-2*y(x) = -10*sin(x); ic:=y(0) = 2, D(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]-2*y[x]==-10*Sin[x]; ic={y[0]==2,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*y(x) + 10*sin(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)