20.21.26 problem Problem 26

Internal problem ID [3953]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number : Problem 26
Date solved : Sunday, March 30, 2025 at 02:12:40 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=6 \cos \left (2 t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=2 \end{align*}

Maple. Time used: 0.137 (sec). Leaf size: 19
ode:=diff(diff(y(t),t),t)+y(t) = 6*cos(2*t); 
ic:=y(0) = 0, D(y)(0) = 2; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = -2 \cos \left (2 t \right )+2 \cos \left (t \right )+2 \sin \left (t \right ) \]
Mathematica. Time used: 0.016 (sec). Leaf size: 18
ode=D[y[t],{t,2}]+y[t]==6*Cos[2*t]; 
ic={y[0]==0,Derivative[1][y][0] ==2}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to 2 (\sin (t)+\cos (t)-\cos (2 t)) \]
Sympy. Time used: 0.075 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) - 6*cos(2*t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 2} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 2 \sin {\left (t \right )} + 2 \cos {\left (t \right )} - 2 \cos {\left (2 t \right )} \]