20.28.11 problem 11

Internal problem ID [4073]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788
Problem number : 11
Date solved : Sunday, March 30, 2025 at 02:16:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\frac {3 x y^{\prime }}{2}-\frac {\left (1+x \right ) y}{2}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 48
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+3/2*x*diff(y(x),x)-1/2*(1+x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_2 \,x^{{3}/{2}} \left (1+\frac {1}{5} x +\frac {1}{70} x^{2}+\frac {1}{1890} x^{3}+\frac {1}{83160} x^{4}+\frac {1}{5405400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_1 \left (1-x -\frac {1}{2} x^{2}-\frac {1}{18} x^{3}-\frac {1}{360} x^{4}-\frac {1}{12600} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 86
ode=x^2*D[y[x],{x,2}]+3/2*x*D[y[x],x]-1/2*(1+x)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \sqrt {x} \left (\frac {x^5}{5405400}+\frac {x^4}{83160}+\frac {x^3}{1890}+\frac {x^2}{70}+\frac {x}{5}+1\right )+\frac {c_2 \left (-\frac {x^5}{12600}-\frac {x^4}{360}-\frac {x^3}{18}-\frac {x^2}{2}-x+1\right )}{x} \]
Sympy. Time used: 1.003 (sec). Leaf size: 65
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x)/2 - (x + 1)*y(x)/2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \sqrt {x} \left (\frac {x^{4}}{83160} + \frac {x^{3}}{1890} + \frac {x^{2}}{70} + \frac {x}{5} + 1\right ) + \frac {C_{1} \left (- \frac {x^{6}}{680400} - \frac {x^{5}}{12600} - \frac {x^{4}}{360} - \frac {x^{3}}{18} - \frac {x^{2}}{2} - x + 1\right )}{x} + O\left (x^{6}\right ) \]