4.3.42 Problems 4101 to 4200

Table 4.367: Second order ode

#

ODE

Mathematica

Maple

Sympy

13178

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

13183

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

13188

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

13190

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13193

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13194

\[ {} y^{\prime \prime }+y = 0 \]

13195

\[ {} y^{\prime \prime }+y = 0 \]

13196

\[ {} y^{\prime \prime }+y = 0 \]

13318

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

13319

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

13320

\[ {} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

13321

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

13322

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

13323

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

13324

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

13325

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

13328

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

13329

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-3 \left (1+x \right ) y^{\prime }+3 y = 0 \]

13330

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

13331

\[ {} \left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

13332

\[ {} \left (2 x +1\right ) y^{\prime \prime }-4 \left (1+x \right ) y^{\prime }+4 y = 0 \]

13333

\[ {} \left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

13334

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

13335

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x} \]

13336

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13337

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

13338

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

13339

\[ {} 3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

13342

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13343

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13344

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13345

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

13346

\[ {} y^{\prime \prime }+9 y = 0 \]

13347

\[ {} 4 y^{\prime \prime }+y = 0 \]

13360

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13361

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

13362

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

13363

\[ {} 3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

13364

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

13365

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

13366

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

13367

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

13368

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13369

\[ {} y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]

13370

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

13371

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13372

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

13373

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

13380

\[ {} y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

13381

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

13382

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

13383

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

13384

\[ {} y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

13385

\[ {} y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

13386

\[ {} y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

13387

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x} \]

13392

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

13393

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

13400

\[ {} y^{\prime \prime }+y = x \sin \left (x \right ) \]

13401

\[ {} y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

13404

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

13405

\[ {} y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]

13406

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 9 x \,{\mathrm e}^{2 x} \]

13407

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]

13408

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]

13409

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]

13410

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]

13411

\[ {} y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]

13412

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]

13413

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]

13414

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \]

13415

\[ {} y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x} \]

13416

\[ {} y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]

13417

\[ {} y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

13420

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

13421

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

13422

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

13423

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

13424

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

13434

\[ {} y^{\prime \prime }+y = \cot \left (x \right ) \]

13435

\[ {} y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

13436

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

13437

\[ {} y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

13438

\[ {} y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

13439

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

13440

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

13441

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

13442

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

13443

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

13444

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

13445

\[ {} y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

13446

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{x}+1} \]

13447

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{2 x}} \]

13448

\[ {} y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

13449

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

13450

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

13451

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

13452

\[ {} x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

13453

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

13454

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]