Internal
problem
ID
[4098]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
2.
First
order
equations.
Exercises
at
page
14
Problem
number
:
1(h)
Date
solved
:
Sunday, March 30, 2025 at 02:17:41 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^3+y(x)^3-x*y(x)^2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^3+y[x]^3)-x*y[x]^2*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 - x*y(x)**2*Derivative(y(x), x) + y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)