Internal
problem
ID
[4104]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
2.
First
order
equations.
Exercises
at
page
14
Problem
number
:
2(d)
Date
solved
:
Sunday, March 30, 2025 at 02:18:06 AM
CAS
classification
:
[_linear]
With initial conditions
ode:=x*diff(y(x),x) = x+y(x); ic:=y(-1) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=x*D[y[x],x]==x+y[x]; ic=y[-1]==-1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - x - y(x),0) ics = {y(-1): -1} dsolve(ode,func=y(x),ics=ics)