Internal
problem
ID
[4154]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
8(c)
Date
solved
:
Sunday, March 30, 2025 at 02:41:08 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+1/2*diff(y(x),x)+1/8*y(x) = 1/8*sin(x)-1/4*cos(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+1/2*D[y[x],x]+1/8*y[x]==1/8*(Sin[x]-2*Cos[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)/8 - sin(x)/8 + cos(x)/4 + Derivative(y(x), x)/2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)