Internal
problem
ID
[4156]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
8(e)
Date
solved
:
Sunday, March 30, 2025 at 02:41:11 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = x^3*exp(2*x)+x*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==x^3*Exp[2*x]+x*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*exp(2*x) - x*exp(2*x) + 4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)