23.4.1 problem 8(a)

Internal problem ID [4166]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 6. Linear systems. Exercises at page 110
Problem number : 8(a)
Date solved : Sunday, March 30, 2025 at 02:41:26 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d x}y_{1} \left (x \right )&=y_{2} \left (x \right )\\ \frac {d}{d x}y_{2} \left (x \right )&=3 y_{2} \left (x \right )-2 y_{1} \left (x \right ) \end{align*}

Maple. Time used: 0.113 (sec). Leaf size: 30
ode:=[diff(y__1(x),x) = y__2(x), diff(y__2(x),x) = 3*y__2(x)-2*y__1(x)]; 
dsolve(ode);
 
\begin{align*} y_{1} \left (x \right ) &= c_1 \,{\mathrm e}^{2 x}+c_2 \,{\mathrm e}^{x} \\ y_{2} \left (x \right ) &= 2 c_1 \,{\mathrm e}^{2 x}+c_2 \,{\mathrm e}^{x} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 54
ode={D[y1[x],x]==y2[x],D[y2[x],x]==3*y2[x]-2*y1[x]}; 
ic={}; 
DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
 
\begin{align*} \text {y1}(x)\to e^x \left (c_2 \left (e^x-1\right )-c_1 \left (e^x-2\right )\right ) \\ \text {y2}(x)\to e^x \left (c_2 \left (2 e^x-1\right )-2 c_1 \left (e^x-1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.073 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y__1 = Function("y__1") 
y__2 = Function("y__2") 
ode=[Eq(-y__2(x) + Derivative(y__1(x), x),0),Eq(2*y__1(x) - 3*y__2(x) + Derivative(y__2(x), x),0)] 
ics = {} 
dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)
 
\[ \left [ y^{1}{\left (x \right )} = C_{1} e^{x} + \frac {C_{2} e^{2 x}}{2}, \ y^{2}{\left (x \right )} = C_{1} e^{x} + C_{2} e^{2 x}\right ] \]