23.4.12 problem 11(c)
Internal
problem
ID
[4177]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
6.
Linear
systems.
Exercises
at
page
110
Problem
number
:
11(c)
Date
solved
:
Sunday, March 30, 2025 at 02:41:41 AM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d x}y_{1} \left (x \right )&=y_{2} \left (x \right )\\ \frac {d}{d x}y_{2} \left (x \right )&=-y_{1} \left (x \right )+y_{3} \left (x \right )\\ \frac {d}{d x}y_{3} \left (x \right )&=-y_{2} \left (x \right ) \end{align*}
✓ Maple. Time used: 0.201 (sec). Leaf size: 79
ode:=[diff(y__1(x),x) = y__2(x), diff(y__2(x),x) = -y__1(x)+y__3(x), diff(y__3(x),x) = -y__2(x)];
dsolve(ode);
\begin{align*}
y_{1} \left (x \right ) &= -\frac {c_2 \sqrt {2}\, \cos \left (\sqrt {2}\, x \right )}{2}+\frac {c_3 \sqrt {2}\, \sin \left (\sqrt {2}\, x \right )}{2}+c_1 \\
y_{2} \left (x \right ) &= c_2 \sin \left (\sqrt {2}\, x \right )+c_3 \cos \left (\sqrt {2}\, x \right ) \\
y_{3} \left (x \right ) &= \frac {c_2 \sqrt {2}\, \cos \left (\sqrt {2}\, x \right )}{2}-\frac {c_3 \sqrt {2}\, \sin \left (\sqrt {2}\, x \right )}{2}+c_1 \\
\end{align*}
✓ Mathematica. Time used: 0.016 (sec). Leaf size: 127
ode={D[y1[x],x]==y2[x],D[y2[x],x]==-y1[x]+y3[x],D[y3[x],x]==-y2[x]};
ic={};
DSolve[{ode,ic},{y1[x],y2[x],y3[x]},x,IncludeSingularSolutions->True]
\begin{align*}
\text {y1}(x)\to \frac {1}{2} \left ((c_1-c_3) \cos \left (\sqrt {2} x\right )+\sqrt {2} c_2 \sin \left (\sqrt {2} x\right )+c_1+c_3\right ) \\
\text {y2}(x)\to c_2 \cos \left (\sqrt {2} x\right )+\frac {(c_3-c_1) \sin \left (\sqrt {2} x\right )}{\sqrt {2}} \\
\text {y3}(x)\to \frac {1}{2} \left ((c_3-c_1) \cos \left (\sqrt {2} x\right )-\sqrt {2} c_2 \sin \left (\sqrt {2} x\right )+c_1+c_3\right ) \\
\end{align*}
✓ Sympy. Time used: 0.155 (sec). Leaf size: 80
from sympy import *
x = symbols("x")
y__1 = Function("y__1")
y__2 = Function("y__2")
y__3 = Function("y__3")
ode=[Eq(-y__2(x) + Derivative(y__1(x), x),0),Eq(y__1(x) - y__3(x) + Derivative(y__2(x), x),0),Eq(y__2(x) + Derivative(y__3(x), x),0)]
ics = {}
dsolve(ode,func=[y__1(x),y__2(x),y__3(x)],ics=ics)
\[
\left [ y^{1}{\left (x \right )} = C_{1} + C_{2} \sin {\left (\sqrt {2} x \right )} - C_{3} \cos {\left (\sqrt {2} x \right )}, \ y^{2}{\left (x \right )} = \sqrt {2} C_{2} \cos {\left (\sqrt {2} x \right )} + \sqrt {2} C_{3} \sin {\left (\sqrt {2} x \right )}, \ y^{3}{\left (x \right )} = C_{1} - C_{2} \sin {\left (\sqrt {2} x \right )} + C_{3} \cos {\left (\sqrt {2} x \right )}\right ]
\]