29.7.26 problem 201

Internal problem ID [4801]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 7
Problem number : 201
Date solved : Sunday, March 30, 2025 at 03:58:29 AM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x y^{\prime }&=y-x \cos \left (\frac {y}{x}\right )^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 12
ode:=x*diff(y(x),x) = y(x)-x*cos(y(x)/x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\arctan \left (\ln \left (x \right )+c_1 \right ) x \]
Mathematica. Time used: 0.438 (sec). Leaf size: 37
ode=x D[y[x],x]==y[x]-x Cos[y[x]/x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x \arctan (-\log (x)+2 c_1) \\ y(x)\to -\frac {\pi x}{2} \\ y(x)\to \frac {\pi x}{2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*cos(y(x)/x)**2 + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational