29.8.34 problem 239

Internal problem ID [4839]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 8
Problem number : 239
Date solved : Sunday, March 30, 2025 at 04:03:14 AM
CAS classification : [_separable]

\begin{align*} 2 x y^{\prime }+y \left (1+y^{2}\right )&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=2*x*diff(y(x),x)+y(x)*(1+y(x)^2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{\sqrt {c_1 x -1}} \\ y &= -\frac {1}{\sqrt {c_1 x -1}} \\ \end{align*}
Mathematica. Time used: 0.446 (sec). Leaf size: 72
ode=2 x D[y[x],x]+y[x](1+y[x]^2)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {i e^{c_1}}{\sqrt {-x+e^{2 c_1}}} \\ y(x)\to \frac {i e^{c_1}}{\sqrt {-x+e^{2 c_1}}} \\ y(x)\to 0 \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 0.750 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + (y(x)**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {\frac {C_{1}}{- C_{1} + x}}, \ y{\left (x \right )} = \sqrt {\frac {C_{1}}{- C_{1} + x}}\right ] \]