Internal
problem
ID
[4864]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
9
Problem
number
:
264
Date
solved
:
Sunday, March 30, 2025 at 04:07:46 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Riccati]
ode:=x^2*diff(y(x),x)+2+x*y(x)*(4+x*y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 D[y[x],x]+2 + x y[x](4+x y[x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + x*(x*y(x) + 4)*y(x) + 2,0) ics = {} dsolve(ode,func=y(x),ics=ics)