29.10.22 problem 288

Internal problem ID [4888]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 10
Problem number : 288
Date solved : Sunday, March 30, 2025 at 04:09:08 AM
CAS classification : [_separable]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+2 x y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=(-x^2+1)*diff(y(x),x)+2*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,x^{2}-c_1 \]
Mathematica. Time used: 0.031 (sec). Leaf size: 18
ode=(1-x^2)D[y[x],x]+2 x y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 \left (x^2-1\right ) \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.224 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x) + (1 - x**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \left (x^{2} - 1\right ) \]