Internal
problem
ID
[4983]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
14
Problem
number
:
384
Date
solved
:
Sunday, March 30, 2025 at 04:27:57 AM
CAS
classification
:
[_Riccati]
ode:=x^n*diff(y(x),x)+x^(2*n-2)+y(x)^2+(-n+1)*x^(n-1) = 0; dsolve(ode,y(x), singsol=all);
ode=x^n*D[y[x],x]+x^(2*n-2)+y[x]^2+(1-n)*x^(n-1)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(x**n*Derivative(y(x), x) + x**(n - 1)*(1 - n) + x**(2*n - 2) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (n*x**(n - 1) - x**(n - 1) - x**(2*n - 2) - y(x)**2)/x**n cannot be solved by the factorable group method