Internal
problem
ID
[4990]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
14
Problem
number
:
392
Date
solved
:
Sunday, March 30, 2025 at 04:28:40 AM
CAS
classification
:
[_linear]
ode:=diff(y(x),x)*(a^2+x^2)^(1/2)+x+y(x) = (a^2+x^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] Sqrt[a^2+x^2]+x+y[x]==Sqrt[a^2 + x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(x + sqrt(a**2 + x**2)*Derivative(y(x), x) - sqrt(a**2 + x**2) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)