29.15.17 problem 425

Internal problem ID [5023]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 15
Problem number : 425
Date solved : Sunday, March 30, 2025 at 06:30:23 AM
CAS classification : [_Bernoulli]

\begin{align*} y y^{\prime }&=b \cos \left (x +c \right )+a y^{2} \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 106
ode:=y(x)*diff(y(x),x) = b*cos(x+c)+a*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {16 \left (a^{2}+\frac {1}{4}\right )^{2} c_1 \,{\mathrm e}^{2 a x}-16 \left (a^{2}+\frac {1}{4}\right ) \left (a \cos \left (x +c \right )-\frac {\sin \left (x +c \right )}{2}\right ) b}}{4 a^{2}+1} \\ y &= -\frac {\sqrt {16 \left (a^{2}+\frac {1}{4}\right )^{2} c_1 \,{\mathrm e}^{2 a x}-16 \left (a^{2}+\frac {1}{4}\right ) \left (a \cos \left (x +c \right )-\frac {\sin \left (x +c \right )}{2}\right ) b}}{4 a^{2}+1} \\ \end{align*}
Mathematica. Time used: 5.731 (sec). Leaf size: 106
ode=y[x] D[y[x],x]== b Cos[x+c]+a y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\left (4 a^2+1\right ) c_1 e^{2 a x}-4 a b \cos (c+x)+2 b \sin (c+x)}}{\sqrt {4 a^2+1}} \\ y(x)\to \frac {\sqrt {\left (4 a^2+1\right ) c_1 e^{2 a x}-4 a b \cos (c+x)+2 b \sin (c+x)}}{\sqrt {4 a^2+1}} \\ \end{align*}
Sympy. Time used: 112.309 (sec). Leaf size: 430
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a*y(x)**2 - b*cos(c + x) + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} - \sqrt {C_{1} e^{2 a x} - i b x e^{2 a x + i x} \sin {\left (c + x \right )} + b x e^{2 a x + i x} \cos {\left (c + x \right )} + b e^{2 a x + i x} \sin {\left (c + x \right )}} & \text {for}\: a = - \frac {i}{2} \\- \sqrt {C_{1} e^{2 a x} + i b x e^{2 a x - i x} \sin {\left (c + x \right )} + b x e^{2 a x - i x} \cos {\left (c + x \right )} + b e^{2 a x - i x} \sin {\left (c + x \right )}} & \text {for}\: a = \frac {i}{2} \\- \sqrt {\frac {4 C_{1} a^{2} e^{2 a x}}{4 a^{2} + 1} + \frac {C_{1} e^{2 a x}}{4 a^{2} + 1} - \frac {4 a b \cos {\left (c + x \right )}}{4 a^{2} + 1} + \frac {2 b \sin {\left (c + x \right )}}{4 a^{2} + 1}} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \sqrt {C_{1} e^{2 a x} - i b x e^{2 a x + i x} \sin {\left (c + x \right )} + b x e^{2 a x + i x} \cos {\left (c + x \right )} + b e^{2 a x + i x} \sin {\left (c + x \right )}} & \text {for}\: a = - \frac {i}{2} \\\sqrt {C_{1} e^{2 a x} + i b x e^{2 a x - i x} \sin {\left (c + x \right )} + b x e^{2 a x - i x} \cos {\left (c + x \right )} + b e^{2 a x - i x} \sin {\left (c + x \right )}} & \text {for}\: a = \frac {i}{2} \\\sqrt {\frac {4 C_{1} a^{2} e^{2 a x}}{4 a^{2} + 1} + \frac {C_{1} e^{2 a x}}{4 a^{2} + 1} - \frac {4 a b \cos {\left (c + x \right )}}{4 a^{2} + 1} + \frac {2 b \sin {\left (c + x \right )}}{4 a^{2} + 1}} & \text {otherwise} \end {cases}\right ] \]