29.16.12 problem 455

Internal problem ID [5053]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 16
Problem number : 455
Date solved : Sunday, March 30, 2025 at 06:33:05 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (1+5 x -y\right ) y^{\prime }+5+x -5 y&=0 \end{align*}

Maple. Time used: 0.046 (sec). Leaf size: 242
ode:=(1+5*x-y(x))*diff(y(x),x)+5+x-5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {i \left (1-{\left (6 \sqrt {3}\, x \sqrt {\frac {27 c_1 \,x^{2}+2 x}{c_1}}\, c_1^{2}+54 c_1^{2} x^{2}+18 c_1 x +1\right )}^{{2}/{3}}+12 c_1 x \right ) \sqrt {3}+6 \left (\left (2-{\left (6 \sqrt {3}\, x \sqrt {\frac {27 c_1 \,x^{2}+2 x}{c_1}}\, c_1^{2}+54 c_1^{2} x^{2}+18 c_1 x +1\right )}^{{1}/{3}}\right ) x +{\left (6 \sqrt {3}\, x \sqrt {\frac {27 c_1 \,x^{2}+2 x}{c_1}}\, c_1^{2}+54 c_1^{2} x^{2}+18 c_1 x +1\right )}^{{1}/{3}}\right ) c_1 +{\left ({\left (6 \sqrt {3}\, x \sqrt {\frac {27 c_1 \,x^{2}+2 x}{c_1}}\, c_1^{2}+54 c_1^{2} x^{2}+18 c_1 x +1\right )}^{{1}/{3}}-1\right )}^{2}}{6 c_1 {\left (6 \sqrt {3}\, x \sqrt {\frac {27 c_1 \,x^{2}+2 x}{c_1}}\, c_1^{2}+54 c_1^{2} x^{2}+18 c_1 x +1\right )}^{{1}/{3}}} \]
Mathematica. Time used: 60.05 (sec). Leaf size: 925
ode=(1+5 x-y[x])D[y[x],x]+5+x-5 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + (5*x - y(x) + 1)*Derivative(y(x), x) - 5*y(x) + 5,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out