29.17.14 problem 473

Internal problem ID [5071]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 17
Problem number : 473
Date solved : Sunday, March 30, 2025 at 06:35:03 AM
CAS classification : [_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x^{3}+2 y\right ) y^{\prime }&=3 x \left (2-x y\right ) \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 51
ode:=(x^3+2*y(x))*diff(y(x),x) = 3*x*(2-x*y(x)); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {x^{3}}{2}-\frac {\sqrt {x^{6}+12 x^{2}-4 c_1}}{2} \\ y &= -\frac {x^{3}}{2}+\frac {\sqrt {x^{6}+12 x^{2}-4 c_1}}{2} \\ \end{align*}
Mathematica. Time used: 0.151 (sec). Leaf size: 65
ode=(x^3+2 y[x])D[y[x],x]==3 x(2 - x y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{2} \left (-x^3-\sqrt {x^6+12 x^2+4 c_1}\right ) \\ y(x)\to \frac {1}{2} \left (-x^3+\sqrt {x^6+12 x^2+4 c_1}\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*(-x*y(x) + 2) + (x**3 + 2*y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ZeroDivisionError : polynomial division