29.18.14 problem 490
Internal
problem
ID
[5088]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
18
Problem
number
:
490
Date
solved
:
Sunday, March 30, 2025 at 06:36:52 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
\begin{align*} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \end{align*}
✓ Maple. Time used: 0.042 (sec). Leaf size: 283
ode:=(7*x+5*y(x))*diff(y(x),x)+10*x+8*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {x \left ({\mathrm e}^{-\frac {5 c_1}{2}}-\sqrt {x^{2} \operatorname {RootOf}\left (\textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-\textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right ) \left (\operatorname {RootOf}\left (\textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-\textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right )^{3} x^{3}+{\mathrm e}^{-3 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )\right )}\right )}{\sqrt {x^{2} \operatorname {RootOf}\left (\textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-\textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right ) \left (\operatorname {RootOf}\left (\textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-\textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right )^{3} x^{3}+{\mathrm e}^{-3 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )\right )}}
\]
✓ Mathematica. Time used: 2.359 (sec). Leaf size: 276
ode=(7 x+5 y[x])D[y[x],x]+10 x+8 y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,1\right ] \\
y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,2\right ] \\
y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,3\right ] \\
y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,4\right ] \\
y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,5\right ] \\
\end{align*}
✓ Sympy. Time used: 0.736 (sec). Leaf size: 26
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(10*x + (7*x + 5*y(x))*Derivative(y(x), x) + 8*y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\log {\left (x \right )} = C_{1} - \log {\left (\left (1 + \frac {y{\left (x \right )}}{x}\right )^{\frac {2}{5}} \left (2 + \frac {y{\left (x \right )}}{x}\right )^{\frac {3}{5}} \right )}
\]