29.19.3 problem 516

Internal problem ID [5112]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 19
Problem number : 516
Date solved : Sunday, March 30, 2025 at 06:41:13 AM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2}&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 18
ode:=x*y(x)*diff(y(x),x)+x^2*exp(-2*y(x)/x)-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (\operatorname {LambertW}\left (-4 \left (\ln \left (x \right )+c_1 \right ) {\mathrm e}^{-1}\right )+1\right ) x}{2} \]
Mathematica. Time used: 60.184 (sec). Leaf size: 25
ode=x y[x] D[y[x],x]+x^2 Exp[(-2 y[x])/x]-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} x \left (1+W\left (\frac {4 (-\log (x)+c_1)}{e}\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*exp(-2*y(x)/x) + x*y(x)*Derivative(y(x), x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational